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1
EXTRACTING SALIENT FEATURES FROM
VIDEO USING A NEUROSYNAPTIC SYSTEM

This invention was made with Government support under
HRO0011-09-C-0002 awarded by Defense Advanced
Research Projects Agency (DARPA). The Government has
certain rights in this invention.

BACKGROUND

The present invention relates to neuromorphic and synap-
tronic computation, and in particular, extracting salient fea-
tures from video using a neurosynaptic system.

Neuromorphic and synaptronic computation, also referred
to as artificial neural networks, are computational systems
that permit electronic systems to essentially function in a
manner analogous to that of biological brains. Neuromorphic
and synaptronic computation do not generally utilize the tra-
ditional digital model of manipulating Os and 1s. Instead,
neuromorphic and synaptronic computation create connec-
tions between processing elements that are roughly function-
ally equivalent to neurons of a biological brain. Neuromor-
phic and synaptronic computation may comprise various
electronic circuits that are modeled on biological neurons.

In biological systems, the point of contact between an axon
of a neural module and a dendrite on another neuron is called
a synapse, and with respect to the synapse, the two neurons
are respectively called pre-synaptic and post-synaptic. The
essence of our individual experiences is stored in conduc-
tance of the synapses. The synaptic conductance changes
with time as a function of the relative spike times of pre-
synaptic and post-synaptic neurons, as per spike-timing
dependent plasticity (STDP). The STDP rule increases the
conductance of a synapse if its post-synaptic neuron fires
after its pre-synaptic neuron fires, and decreases the conduc-
tance of a synapse if the order of the two firings is reversed.

BRIEF SUMMARY

One embodiment of the present invention provides a
method of visual saliency estimation. The method comprises
receiving an input sequence of image frames. Each image
frame has one or more channels of pixels. The method further
comprises generating, for each channel of each image frame,
corresponding neural spiking data representing a pixel inten-
sity of each pixel of the channel, and generating, based on the
neural spiking data, a corresponding multi-scale data struc-
ture comprising one or more data layers. Each data layer
outputs a neural spiking representation based on spatial sub-
sampling of the neural spiking data at a given subsampling
scale. The method further comprises extracting a correspond-
ing map of features for each data layer of the multi-scale data
structure by processing a neural spiking representation out-
putted by the data layer, and encoding features of each map of
features extracted as neural spikes.

Another embodiment of the present invention provides a
neuromorphic saliency system. The system comprises a
transducer unit for receiving an input sequence of image
frames. Each image frame has one or more channels of pixels.
For each channel of each image frame, the transducer unit
generates corresponding neural spiking data based on a pixel
intensity of each pixel of the channel. The system further
comprises a multi-scale spatio-temporal saliency corelet
including one or more neurosynaptic core circuits. For each
channel of each image frame, the core circuits generate, based
on corresponding neural spiking data, a corresponding multi-
scale data structure comprising one or more data layers. Each
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2

data layer outputs a neural spiking representation based on
spatial subsampling of the neural spiking data at a given
subsampling scale. The core circuits extract a corresponding
map of features for each data layer of the multi-scale data
structure by processing a neural spiking representation out-
putted by the data layer, and encode features of each map of
features extracted as neural spikes. Each map of features
extracted is merged into a single map of features representing
estimated visual saliency for the input sequence of image
frames.

These and other features, aspects, and advantages of the
present invention will become understood with reference to
the following description, appended claims, and accompany-
ing figures.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates an example neurosynaptic core circuit
(“core circuit”), in accordance with an embodiment of the
invention;

FIG. 2 illustrates an example neurosynaptic network cir-
cuit, in accordance with an embodiment of the invention;

FIG. 3 illustrates an example corelet for at least one core
circuit, in accordance with an embodiment of the invention;

FIG. 4 illustrates a hierarchical composition of corelets, in
accordance with an embodiment of the invention;

FIG. 5 illustrates an example saliency system, in accor-
dance with an embodiment of the invention;

FIG. 6 illustrates pre-processing an input video for feature
extraction, in accordance with an embodiment of the inven-
tion;

FIG. 7 illustrates an example multi-scale spatio-temporal
saliency corelet, in accordance with an embodiment of the
invention;

FIG. 8A illustrates extracting motion saliency features, in
accordance with an embodiment of the invention;

FIG. 8B illustrates extracting spatial saliency features for a
first channel, in accordance with an embodiment of the inven-
tion;

FIG. 8C illustrates extracting spatial saliency features for a
second channel, in accordance with an embodiment of the
invention

FIG. 8D illustrates extracting spatial saliency features fora
third channel, in accordance with an embodiment of the
invention

FIG. 9 illustrates fusing multiple saliency maps, in accor-
dance with an embodiment of the invention;

FIG. 10 illustrates detected regions of interest, in accor-
dance with an embodiment of the invention;

FIG. 11 illustrates multiple example periodic spikes, in
accordance with an embodiment of the invention;

FIG. 12 illustrates a flowchart of an example process for
determining regions of interest, in accordance with an
embodiment of the invention;

FIG. 13 illustrates a flowchart of an example process for
generating and merging saliency maps, in accordance with an
embodiment of the invention; and

FIG. 14 is a high level block diagram showing an informa-
tion processing system useful for implementing one embodi-
ment of the present invention.

DETAILED DESCRIPTION

The present invention relates to neuromorphic and synap-
tronic computation, and in particular, extracting salient fea-
tures from video using a neurosynaptic system. In one
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embodiment, an input sequence of image frames is received.
Each image frame has one or more channels of pixels. For
each channel of each image frame, corresponding neural
spiking data based on a pixel intensity of each pixel of the
channel is generated. Based on the neural spiking data, a
corresponding multi-scale data structure comprising one or
more data layers is also generated. Each data layer outputs a
neural spiking representation based on spatial subsampling of
the neural spiking data at a given subsampling scale. A cor-
responding map of features is extracted from each data layer,
and features of each map of features extracted are encoded as
neural spikes. Each map of features extracted is merged into
a single map of features representing estimated visual
saliency for the input sequence of image frames.

In one embodiment, a neurosynaptic system comprises a
system that implements neuron models, synaptic models,
neural algorithms, and/or synaptic algorithms. In one
embodiment, a neurosynaptic system comprises software
components and/or hardware components, such as digital
hardware, analog hardware or a combination of analog and
digital hardware (i.e., mixed-mode).

The term electronic neuron as used herein represents an
architecture configured to simulate a biological neuron. An
electronic neuron creates connections between processing
elements that are roughly functionally equivalent to neurons
of a biological brain. As such, a neuromorphic and synap-
tronic computation comprising electronic neurons according
to embodiments of the invention may include various elec-
tronic circuits that are modeled on biological neurons. Fur-
ther, a neuromorphic and synaptronic computation compris-
ing electronic neurons according to embodiments of the
invention may include various processing elements (includ-
ing computer simulations) that are modeled on biological
neurons. Although certain illustrative embodiments of the
invention are described herein using electronic neurons com-
prising electronic circuits, the present invention is not limited
to electronic circuits. A neuromorphic and synaptronic com-
putation according to embodiments of the invention can be
implemented as a neuromorphic and synaptronic architecture
comprising circuitry, and additionally as a computer simula-
tion. Indeed, embodiments of the invention can take the form
of an entirely hardware embodiment, an entirely software
embodiment or an embodiment containing both hardware and
software elements.

The term electronic axon as used herein represents an
architecture configured to simulate a biological axon that
transmits information from one biological neuron to different
biological neurons. In one embodiment, an electronic axon
comprises a circuit architecture. An electronic axon is func-
tionally equivalent to axons of a biological brain. As such,
neuromorphic and synaptronic computation involving elec-
tronic axons according to embodiments of the invention may
include various electronic circuits that are modeled on bio-
logical axons. Although certain illustrative embodiments of
the invention are described herein using electronic axons
comprising electronic circuits, the present invention is not
limited to electronic circuits.

FIG. 1 illustrates an example neurosynaptic core circuit
(“core circuit”) 10, in accordance with an embodiment of the
invention. The core circuit 10 comprises a plurality of elec-
tronic neurons (“neurons”) 11 and a plurality of electronic
axons (“axons”) 15. The neurons 11 and the axons 15 are
interconnected via an mxn crossbar 12 comprising multiple
intra-core electronic synapse devices (“synapses”™) 31, mul-
tiple rows/axon paths 26, and multiple columns/dendrite
paths 34, wherein “x” represents multiplication, and m and n
are positive integers.
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Each synapse 31 communicates firing events (e.g., spike
events) between an axon 15 and a neuron 11. Specifically,
each synapse 31 is located at cross-point junction between an
axon path 26 and a dendrite path 34, such that a connection
between the axon path 26 and the dendrite path 34 is made
through the synapse 31. Each axon 15 is connected to an axon
path 26, and sends firing events to the connected axon path 26.
Each neuron 11 is connected to a dendrite path 34, and
receives firing events from the connected dendrite path 34.
Therefore, each synapse 31 interconnects an axon 15 to a
neuron 11, wherein, with respect to the synapse 31, the axon
15 and the neuron 11 represent an axon of a pre-synaptic
neuron and a dendrite of a post-synaptic neuron, respectively.

Each synapse 31 and each neuron 11 has configurable
operational parameters. In one embodiment, the core circuit
10 is a uni-directional core, wherein the neurons 11 and the
axons 15 of the core circuit 10 are arranged as a single neuron
array and a single axon array, respectively. In another embodi-
ment, the core circuit 10 is a bi-directional core, wherein the
neurons 11 and the axons 15 of the core circuit 10 are
arranged as two neuron arrays and two axon arrays, respec-
tively. For example, a bi-directional core circuit 10 may have
ahorizontal neuron array, a vertical neuron array, a horizontal
axon array and a vertical axon array, wherein the crossbar 12
interconnects the horizontal neuron array and the vertical
neuron array with the vertical axon array and the horizontal
axon array, respectively.

In response to the firing events received, each neuron 11
generates a firing event according to a neuronal activation
function. A preferred embodiment for the neuronal activation
function can be leaky integrate-and-fire.

An external two-way communication environment may
supply sensory inputs and consume motor outputs. The neu-
rons 11 and axons 15 are implemented using complementary
metal-oxide semiconductor (CMOS) logic gates that receive
firing events and generate a firing event according to the
neuronal activation function. In one embodiment, the neurons
11 and axons 15 include comparator circuits that generate
firing events according to the neuronal activation function. In
one embodiment, the synapses 31 are implemented using
1-bit static random-access memory (SRAM) cells. Neurons
11 that generate a firing event are selected one at a time, and
the firing events are delivered to target axons 15, wherein the
target axons 15 may reside in the same core circuit 10 or
somewhere else in a larger system with many core circuits 10.

As shown in FIG. 1, the core circuit 10 further comprises an
address-event receiver (Core-to-Axon) 4, an address-event
transmitter (Neuron-to-Core) 5, and a controller 6 that func-
tions as a global state machine (GSM). The address-event
receiver 4 receives firing events and transmits them to target
axons 15. The address-event transmitter 5 transmits firing
events generated by the neurons 11 to the core circuits 10
including the target axons 15.

The controller 6 sequences event activity within a time-
step. The controller 6 divides each time-step into operational
phases in the core circuit 10 for neuron updates, etc. In one
embodiment, within a time-step, multiple neuron updates and
synapse updates are sequentially handled in a read phase and
a write phase, respectively. Further, variable time-steps may
be utilized wherein the start of a next time-step may be trig-
gered using handshaking signals whenever the neuron/syn-
apse operation of the previous time-step is completed. For
external communication, pipelining may be utilized wherein
load inputs, neuron/synapse operation, and send outputs are
pipelined (this effectively hides the input/output operating
latency).
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As shown in FIG. 1, the core circuit 10 further comprises a
routing fabric 70. The routing fabric 70 is configured to selec-
tively route neuronal firing events among core circuits 10. The
routing fabric 70 comprises a firing events address lookup
table (LUT) module 57, a packet builder (PB) module 58, a
head delete (HD) module 53, and a core-to-core packet switch
(PSw) 55. The LUT 57 is an N address routing table is
configured to determine target axons 15 for firing events
generated by the neurons 11 in the core circuit 10. The target
axons 15 may be axons 15 in the same core circuit 10 or other
core circuits 10. The LUT 57 retrieves information such as
target distance, direction, addresses, and delivery times (e.g.,
about 19 bits/packetx4 packets/neuron). The LUT 57 con-
verts firing events generated by the neurons 11 into forward-
ing addresses of the target axons 15.

The PB 58 packetizes the routing information retrieved by
the LUT 57 into outgoing address-event packets. The core-
to-core PSw 55 is an up-down-left-right mesh router config-
ured to direct the outgoing address-event packets to the core
circuits 10 containing the target axons 15. The core-to-core
PSw 55 is also configured to receive incoming address-event
packets from the core circuits 10. The HD 53 removes routing
information from an incoming address-event packet to
deliver it as a time stamped firing event to the address-event
receiver 4.

In one example implementation, the core circuit 10 may
comprise 256 neurons 11. The crossbar 12 may be a 256x256
ultra-dense crossbar array that has a pitch in the range of
about 0.1 nmto 10 um. The LUT 57 of the core circuit 10 may
comprise 256 address entries, each entry of length 32 bits.

In one embodiment, soft-wiring in the core circuit 10 is
implemented using address events (e.g., Address-Event Rep-
resentation (AER)). Firing event (i.e., spike event) arrival
times included in address events may be deterministic or
non-deterministic.

Although certain illustrative embodiments of the invention
are described herein using synapses comprising electronic
circuits, the present invention is not limited to electronic
circuits.

FIG. 2 illustrates an example neurosynaptic network cir-
cuit 60, in accordance with an embodiment of the invention.
The network circuit 60 is an example multi-core neurosyn-
aptic system comprising multiple interconnected core circuits
10. In one embodiment, the core circuits 10 are arranged as a
two-dimensional tile-able core array 62. Each core circuit 10
may be identified by its Cartesian coordinates as core (i, j),
wherein i is a row index and j is a column index of the core
array 62 (i.e., core (0,0), core (0,1), . . ., core (5,7)).

Each core circuit 10 utilizes its core-to-core PSw 55 (FIG.
1) to pass along neuronal firing events in the eastbound,
westbound, northbound, or southbound direction. For
example, a neuron 11 (FIG. 1) of the core circuit (0,0) may
generate a firing event targeting an incoming axon 15 (FIG. 1)
of the core circuit (5,7). To reach the core circuit (5,7), the
firing event may traverse seven core circuits 10 in the east-
bound direction (i.e., from core (0,0) to cores (0,1), (0,2),
(0,3), (0,4),(0,5), (0,6), and (0,7)), and five core circuits 10 in
the southbound direction (i.e., from core (0,7) to cores (1, 7),
(2,7),(3,7),(4,7),and (5, 7)) via the core-to-core PSws 55 of
the network circuit 60.

FIG. 3 illustrates an example corelet 100 for at least one
core circuit 10, in accordance with an embodiment of the
invention. A corelet 100 is a structural description of one or
more core circuits 10. Corelets 100 are applicable to different
types of neural core circuits. In one embodiment, a corelet
100 is a static configuration file for programming a portion
(i.e., a fraction) of'a core circuit 10 or an entire core circuit 10.
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Corelets 100 may also be composed in a hierarchical fashion,
such that a corelet 100 may be used to program two or more
corelets 100 representing multiple interconnected core cir-
cuits 10.

A corelet 100 may program the neuronal activity of one or
more core circuits 10 of the neural network circuit 60. For
example, a corelet 100 may be used to program the routing
fabric 70 of a core circuit 10. Other examples of activities a
corelet 100 may program a core circuit 10 to perform edge
detection in image/video, motion history tracking in video,
object classification, sense-response in a robotic environ-
ment, and sound filtering.

Each corelet 100 comprises C constituent units (“constitu-
ent sub-corelets™) 110, wherein C is an integer greater than or
equal to one. Each sub-corelet 110 defines one of the follow-
ing: a portion (i.e., a fraction) of a core circuit 10, an entire
core circuit 10, or a corelet 100 that in turn defines multiple
interconnected core circuits 10. For example, as shown in
FIG. 3, each sub-corelet 110 represents a core circuit 10.

All sub-corelets 110 of the corelet 100 are numbered. For
example, each sub-corelet 110 may be identified by a corre-
sponding index SC, wherein O=i=C-1.

The corelet 100 receives I inputs 120, wherein 1 is an
integer greater than or equal to one. Each input 120 may
represent a firing event from another corelet 100 or an input
from an external system, such as sensory input from an exter-
nal sensory system. All inputs 120 received by the corelet 100
are addressed. For example, each input 120 may be addressed
by a corresponding index Input, wherein O<j<I-1.

The corelet 100 generates O outputs 130, wherein O is an
integer greater than or equal to one. Each output 130 may
represent a firing event generated by a neuron 11 of a sub-
corelet 110. Each output 130 may be routed to another corelet
100 or an external system, such as an external motor system.
All outputs 130 generated by the corelet 100 are addressed.
For example, each output 130 may be addressed by a corre-
sponding index Output,, wherein 0<k=O-1.

The corelet 100 further comprises an input mapping table
140 and an output mapping table 150. In one embodiment,
each table 140, 150 is a routing table that maintains routing
information. As described in detail later herein, the input
mapping table 140 maintains routing information for each
input 120 received by the corelet 100. Based on the input
mapping table 140, each received input 120 is mapped to an
input of a sub-corelet 110 within the corelet 100. If each
sub-corelet 110 is a core circuit 10, each received input 120 is
mapped to a target incoming axon 15. If each sub-corelet 110
is a corelet 100, each received input 120 is mapped to an input
120 of a corelet 100.

The output mapping table 150 maintains routing informa-
tion for each output generated by each sub-corelet 110 of the
corelet 100. If a sub-corelet 110 is a core circuit 10, the output
generated by the sub-corelet 110 is a firing event. If a sub-
corelet 110 is a corelet 100, the output generated by the
sub-corelet 110 is an output 130. Based on the output map-
ping table 150, each output generated by a sub-corelet 110 is
mapped to one of the following: an input of a sub-corelet 110
within the corelet 100 (e.g., a target incoming axon 15, or an
input 120 of a corelet 100), or an output 130 of the corelet 100.
As stated above, each output 130 is routed to another corelet
100 or an external system, such as an external motor system.

The example corelet 100 shown in FIG. 3 comprises three
sub-corelets 110, wherein each sub-corelet 110 represents a
core circuit 10. In one embodiment, each core circuit 10
comprises a 256x256 ultra-dense crossbar 12 (FIG. 1) of
synapses 31 (FIG. 1) that interconnects 256 neurons 11 (FIG.
1) with 256 incoming axons 15 (FIG. 1). At maximum, the
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corelet 100 in FIG. 3 has about 768 (i.e., 256x3) inputs 120
and about 768 (i.e., 256x3) outputs 130. The number of inputs
120 and the number of outputs 130 may be less, depending on
the interconnections between the sub-corelets 110 as deter-
mined by the input mapping table 140 and the output mapping
table 150.

FIG. 4 illustrates a hierarchical composition of corelets
100, in accordance with an embodiment of the invention.
Each corelet 100 is modular, reusable, and scalable. Corelets
100 may be combined to form a corelet 100. In one embodi-
ment, a complex corelet 160 is a corelet 100 that is composed
of at least two corelets 100. Complex corelets 160 are used to
program multiple corelets 100 representing multiple inter-
connected core circuits 10.

In one embodiment, a neurosynaptic system configured
using corelets 100 may be used to extract salient features from
video comprising a sequence of image frames. For each
image frame, the system is configured to detect one or more
salient image regions by identifying one or more subsets of
pixels where one or more changes having occurred over time.
For each image frame, the system is further configured to
detect one or more salient image regions by identifying one or
more subsets of pixels where the features extracted differ
from features extracted from one or more local surrounding
regions.

FIG. 5 illustrates an example saliency system 200, in accor-
dance with an embodiment of the invention. The saliency
system 200 extracts one or more salient features from an input
video 250 (FIG. 6) comprising an input sequence of image
frames 250F (FIG. 6), wherein each image frame 250F has
one or more channels of pixels. Based on the salient features
extracted, the saliency system 200 determines one or more
regions of interest in the input video 250. In one embodiment,
the saliency system 200 comprises a transducer unit 210, a
multi-scale spatio-temporal saliency corelet 220, and a syn-
chronization unit 230.

The transducer unit 210 receives an input video 250, and
pre-processes the input video 250 for feature extraction. As
described in detail later herein, the transducer unit 210 gen-
erates, for each channel of each image frame, corresponding
neural spiking data including neural spikes (i.e., neuronal
firing events), wherein the corresponding neural spiking data
represents a pixel intensity of each pixel of the channel.

The multi-scale spatio-temporal saliency corelet 220 is an
example complex corelet 160 comprising multiple corelets
100. The saliency system 200 utilizes the multi-scale spatio-
temporal saliency corelet 220 for feature extraction. As
described in detail later herein, the saliency system 200 uti-
lizes the multi-scale spatio-temporal saliency corelet 220 to
generate, for each channel of each image frame, a correspond-
ing multi-scale data structure based on corresponding neural
spiking data, wherein the corresponding multi-scale data
structure comprises one or more data layers, and wherein
each data layer outputs a neural spiking representation based
on spatial subsampling of the corresponding neural spiking
data at a given subsampling scale. For each data layer of the
corresponding multi-scale data structure, the multi-scale spa-
tio-temporal saliency corelet 220 extracts a corresponding
map of features by processing a neural spiking representation
outputted by the data layer. The map of features extracted may
include at least one motion saliency feature and at least one
spatial saliency feature. For each map of features extracted,
the multi-scale spatio-temporal saliency corelet 220 encodes
features of the map of features as neural spikes. The multi-
scale spatio-temporal saliency corelet 220 merges each map
of features extracted into a single map of features represent-
ing estimated visual saliency for the input video 250.
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In one embodiment, the single map of features includes
neural spiking data representing a value of each output pixel.

In one embodiment, for each data layer of each multi-scale
data structure, a map of features corresponding to the data
layer is equal to a neural spiking representation outputted by
the data layer.

The synchronization unit 230 generates periodic control
pulses for synchronizing the corelets 100 of the multi-scale
spatio-temporal saliency corelet 220.

In one embodiment, the input video 250 constitutes one or
more image frames 250F that are not necessarily related to
each other.

In one embodiment, each map of features extracted is a
retinotopic map of features.

In one embodiment, each multi-scale data structure corre-
sponding to each channel of each image frame is a distinct
multi-scale pyramidal representation of the channel of the
image frame, such as a Gaussian pyramid.

In one embodiment, for each data layer of each multi-scale
data structure, extracting a corresponding map of features by
processing a neural spiking representation outputted by the
data layer comprises determining one or more intermediate
retinotopic maps.

FIG. 6 illustrates pre-processing an input video 250 for
feature extraction, in accordance with an embodiment of the
invention. In one embodiment, the transducer unit 210 con-
verts the input video 250 to a pre-determined color space.
Specifically, the transducer unit 210 converts each image
frame 250F of the input video 250 to one or more channels
240, wherein each channel corresponds to a dimension of a
color space.

For example, in one embodiment, the input video 250
comprises a sequence of image frames 250F in the RGB color
space, wherein each image frame 250F is a 1088x1920 pixel
RGB image with 8 bits per channel (i.e., 8 bits for the R
dimension of the RGB color space, 8 bits for the G dimension
of'the RGB color space, and 8 bits for the B dimension of the
RGB color space). Each pixel of each image frame 250F has
acorresponding pixel intensity value per channel (e.g., a pixel
intensity value ranging from 0 to 255). The frame rate for the
input video 250 is 30 frames per second.

The transducer unit 210 converts each image frame 250F of
the input video 250 from the RGB color space to the L. *a*b*
color space. Specifically, the transducer unit 210 converts
each image frame 250F to three separate channels 240: a first
channel 260 (“Channel 17) corresponding to the L* dimen-
sion of the L.*a*b* color space, a second channel 270 (“Chan-
nel 2”) corresponding to the a* dimension of the L*a*b* color
space, and a third channel 280 (“Channel 3”) corresponding
to the b* dimension of the L*a*b* color space. In another
embodiment, the transducer unit 210 converts each image
frame 250F to fewer than, or more than, three separate chan-
nels 240.

In one embodiment, the transducer unit 210 downsamples
each image frame 250F of the input video 250. For example,
the transducer unit 210 downsamples each image frame 250F
from 1088x1920 pixels to 136x240 pixels.

As stated above, the transducer unit 210 converts each pixel
of each image frame 250F of the input video 250 to one or
more neuronal firing events. For example, the transducer unit
210 converts each pixel of each image frame 260F, 270F and
280F of Channel 1, Channel 2 and Channel 3, respectively, to
neuronal firing events. Specifically, the transducer unit 210
converts a corresponding pixel intensity value for each pixel
to a pre-determined number of bits.

In one embodiment, the transducer unit 210 converts a
corresponding pixel intensity value for each pixel to 4-bits,
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thereby enabling each pixel to be represented as a rate code of
between 0 to 15 neuronal firing events. The number of neu-
ronal firing events for a pixel represents the 4-bit pixel inten-
sity value for the pixel. Therefore, Channel 1 represents a
sequence of image frames 260F for a 4-bit transduced video
in the L* dimension, Channel 2 represents a sequence of
image frames 270F for a 4-bit transduced video in the a*
dimension, and Channel 3 represents a sequence of image
frames 280F for a 4-bit transduced video in the b* dimension.
In another embodiment, the transducer unit 210 converts a
corresponding pixel intensity value for each pixel to fewer
than, or more than, 4-bits.

For each channel of each image frame, a pixel intensity of
each pixel of the channel is converted to neural spikes based
on a temporal coding scheme and a spatial coding scheme.

In one embodiment, the temporal coding scheme is rate
coding. In rate coding, each pixel of each image frame has a
corresponding spike count based on a corresponding intensity
value for the pixel, wherein the corresponding spike count
represents the number of neural spikes delivered to one or
more input lines for the pixel within a pre-determined time
window. A corresponding intensity value for each pixel of
each image frame is mapped to a corresponding spike count
for the pixel based on one of a linear mapping and a non-linear
mapping. A predetermined floor value or a predetermined
ceiling value may used for mapping a corresponding intensity
value for each pixel of each image frame is to a corresponding
spike count for the pixel.

In another embodiment, the temporal coding scheme is
stochastic coding. In stochastic coding, each pixel of each
image frame has a corresponding spiking probability based
on a corresponding intensity value for the pixel, wherein the
corresponding spiking probability represents the probability
that a neural spike is delivered to one or more input lines for
the pixel in each time step. A corresponding intensity value
for each pixel of each image frame is mapped to a correspond-
ing spiking probability for the pixel based on one of a linear
mapping and a non-linear mapping. A predetermined floor
value or a predetermined ceiling value may be used for map-
ping a corresponding intensity value for each pixel of each
image frame to a corresponding spiking probability for the
pixel.

In one embodiment, the spatial coding scheme is single line
coding. In single line coding, neural spikes for each pixel of
each image frame are delivered to a single input line for the
pixel.

In another embodiment, the spatial coding scheme is popu-
lation coding. In population coding, neural spikes for each
pixel of each image frame are delivered to multiple input lines
for the pixel, wherein each input line of the multiple input
lines is configured to encode values having one of a particular
sign and a particular amplitude.

FIG. 7 illustrates an example multi-scale spatio-temporal
saliency corelet 220, in accordance with an embodiment of
the invention. The multi-scale spatio-temporal saliency core-
let 220 comprises multiple corelets 100 for feature extraction.
In one embodiment, the multi-scale spatio-temporal saliency
corelet 220 comprises a motion and saliency corelet 400 for
extracting motion saliency features and spatial saliency fea-
tures from each image frame 250F of the input video 250. As
shown in FIG. 7, the motion and saliency corelet 400 is itself
a complex corelet 160 comprising multiple corelets 100.

In one embodiment, the motion and saliency corelet 400
comprises multiple Gaussian pyramid corelets 410. Each
channel 240 has at least one corresponding Gaussian pyramid
corelet 410 for generating a Gaussian pyramid 500 (FIG. 8A)
of different scaled image frames (i.e., data layers). Specifi-
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cally, for each image frame of each channel 240, a Gaussian
pyramid 500 comprising the image frame and samples of the
image frame are generated, wherein each sample represents a
coarser-scaled version of the image frame. Let the term scale
i generally denote a scale (i.e., data layer) represented by a
Gaussian pyramid 500, wherein i is a positive integer. As
shown in FIG. 7, each Channel 1, Channel 2 and Channel 3
has at least one corresponding Gaussian pyramid corelet 410
for generating an image frame of scale 1.

The motion and saliency corelet 400 further comprises
multiple motion saliency corelets 420 for extracting motion
saliency features from the input video 250. Each motion
saliency corelet 420 is used to detect regions of interest within
the input video 250 where motion is detected (i.e., where
abrupt changes occur after a brief period of time). An object
recognition algorithm may then be applied to the detected
regions to classify objects within the detected regions.

Specifically, the saliency system 200 extracts motion
saliency features from image frames 260F of Channel 1. Each
scale 1 of a Gaussian pyramid 500 for Channel 1 has a corre-
sponding motion saliency corelet 420 for receiving an image
frame of scale i generated by a Gaussian pyramid corelet 410,
and extracting motion saliency features based on the image
frame and adjacent image frames of scale i. Each motion
saliency corelet 420 is a complex corelet 160 comprising a
splitter and spike delay corelet 420A, a spike difference core-
let 420B, and a motion history corelet 420C. The splitter and
spike delay corelet 420 A functions as a splitter by generating
two copies of an image frame of scale i. In one embodiment,
the splitter and spike delay corelet 420A utilizes 255 core
units 10 for generating the two copies of the image frame.
Each copy of the image frame is forwarded to the spike
difference corelet 420B; however, the second copy of the
image frame is delayed and forwarded only after a pre-deter-
mined period oftime has elapsed (e.g., a few milliseconds). In
one embodiment, the splitter and spike delay corelet 420A
utilizes 128 core units 10 for delaying the second copy of the
image frame.

In one embodiment, for each data layer (i.e., scale) of each
multi-scale data structure (i.e., Gaussian pyramid) corre-
sponding to each channel of each image frame 250F, a neural
spiking representation outputted by the data layer is updated
with each new image frame, and a retinotopic transformation
between two maps of features extracted from the multi-scale
data structure is applied to determine a diffeomorphic map-
ping between pixel coordinates of the two maps.

The spike difference corelet 420B receives a first image
frame and a second image frame from the splitter and spike
delay corelet 420A, wherein the second image frame is a
time-delayed image frame that precedes the first image frame
in the input video 250. The spike difference corelet 420B
determines whether the absolute value of a difference in
intensity between corresponding pixels in the first image
frame and the second image frame exceeds a pre-determined
(e.g., user-specified) threshold. If the pre-determined thresh-
old is exceeded, this is interpreted to mean that motion has
been detected in the corresponding pixel, and the correspond-
ing neuron outputs a spike to indicate that motion has been
detected. In one embodiment, the spike difference corelet
420B utilizes 389 core units 10. In one embodiment, the spike
difference corelet 420B is power efficient, such that the spike
difference corelet 420B generates a maximum of one neu-
ronal firing event per pixel every 19 milliseconds.

Based on differences determined by the spike difference
corelet 420B, the motion history corelet 420C tracks objects
with non-uniform speeds in regions of interests where motion
is detected. Each input axon 15 of the motion history corelet
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420C is mapped to a unique output neuron 11. Each input
spike received by each neuron 11 increases a membrane
potential of the neuron by a pre-determined (e.g., user-speci-
fied) threshold. For each neuron, a membrane potential of the
neuron is decreased during each time step, wherein the mini-
mum value that the membrane potential may be equal to is
zero. Each neuron 11 fires a single output spike with a prob-
ability that is proportional to a membrane potential of the
neuron. Therefore, a neuron is more likely to fire an output
spike if a membrane potential of the neuron is high (e.g., the
neuron 11 is more likely to generate an output spike if an input
axon 15 mapped to the neuron 11 recently received many
input spikes). In one embodiment, the motion history corelet
420C utilizes 128 core units 10 including neurons 11 that
operate stochastically.

The motion and saliency corelet 400 further comprises
multiple spatial saliency corelets 430 for extracting spatial
saliency features from the input video 250. The spatial
saliency corelets 430 complement the motion saliency core-
lets 420. Specifically, the spatial saliency corelets 430 are
used to detect regions of interest in the input video 250 that are
not detected by the motion saliency corelets 420 (e.g.,
motionless regions of interest). In one embodiment, the input
video 250 represents video captured from a coordinate frame
that is in motion (e.g., vision sensors mounted on a moving
object).

Specifically, the saliency system 200 extracts spatial
saliency features from each individual image frame 260F,
270F and 280F of Channel 1, Channel 2 and Channel 3,
respectively. Each scale i of each Gaussian pyramid 500 for
each channel 240 has a corresponding spatial saliency corelet
430 for receiving an image frame of scale i generated by a
Gaussian pyramid corelet 410, and extracting spatial saliency
features based on the image frame. Each spatial saliency
corelet 430 is a complex corelet 160 comprising an edge
strength corelet 430A, a local averaging corelet 430B, and a
center surround corelet 430C.

An edge strength corelet 430A estimates, in real-time, the
strength of edges (“edge strength™) within an image frame
from a channel 240. In one embodiment, the edge strength
corelet 430A calculates the gradient of the image frame based
on partial derivates along an x-axis and y-axis of the image
frame. The saliency system 200 determines the edge strength
within each image frame from each channel 240, and fuses
the edge strengths determined through a BUS-OR operation
to generate anywhere between 0 to 15 neuronal firing events
for each pixel, wherein the neuronal firing events generated
indicate the edge strength of an edge at the pixel.

A local averaging corelet 430B calculates a mean edge
strength at each pixel. In one embodiment, the local averaging
corelet 430B calculates a mean edge strength for a patch of
pixels within an image frame. In one embodiment, the size of
the patch is based on a pre-determined size parameter (e.g.,
5%5 pixels). In one embodiment, the local averaging corelet
430B is efficient in terms of the number of neurons 11. In one
embodiment, all core units 10 utilized by the local averaging
corelet 430B are synchronized. In one embodiment, all core
units 10 may calculate the local average number of neuronal
firing events regardless of the order in which the neuronal
firing events arrive at the local averaging corelet 430B. In one
embodiment, a maximum of 15 neuronal firing events per
pixel arrive at the local averaging corelet 430B.

In one embodiment, one core unit 10 is utilized for calcu-
lating a mean edge strength for each pixel in a patch of pixels,
wherein the patch has dimensions no larger than 16x16. For
each pixel in the patch, a mean pixel intensity in a 5x5 neigh-
borhood is calculated. Partial results from neighboring pixels
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that are mapped to different cores may need to be fused. If a
resetting of the membrane potential is required at the end of
each frame, then at least one axon 15 on the core unit 10 is
necessary for resetting each neuron’s membrane potential to
Zero.

A center surround corelet 430C applies a center surround
operator to each pixel of an image frame from a channel 240.
The center surround corelet 430C generates a single neuronal
firing event for a pixel if it determines that a corresponding
membrane potential exceeds a pre-determined threshold.

As stated above, the synchronization unit 230 generates
periodic control pulses for synchronizing the corelets 100 of
the multi-scale spatio-temporal saliency corelet 220. Syn-
chronizing the corelets 100 in turn synchronizes the neuronal
firing events generated by neurons 11 of the corelets 100. In
one embodiment, the synchronized neuronal firing events
may be used to reset the neurons 11 in preparation for a next
image frame. In one embodiment, the synchronized neuronal
firing events may be used to indicate when to sample a mem-
brane potential in order to force the generation of a neuronal
firing event if the membrane potential is above a pre-deter-
mined (e.g., user specified) threshold. In one embodiment, the
synchronized neuronal firing events may be used to bias a
membrane potential to provide more accurate calculations
(e.g., rounding).

In one embodiment, periodic spikes are generated using
periodically spiking neurons. The periodic spikes are distrib-
uted to axons of a neurosynaptic circuit. The periodic spikes
represents period control pulses/signals for synchronizing a
subset of the neurons at periodic intervals, and synchronizing
the subset comprises one of the following: resetting a mem-
brane potential of each neuron of the subset to a pre-deter-
mined membrane potential value, biasing a membrane poten-
tial of each neuron of the subset, and probing each neuron of
the subset to output an output spike based on a corresponding
neuronal function and all input spikes received by the neuron
in a current interval. In one embodiment, a periodic interval
corresponds to one of the following: an end of an image
frame, a beginning of an image frame, and an interval from a
beginning of a current image frame up to and including a
clock tick before the periodic spikes are distributed to the
axons of the neurosynaptic circuit. In one embodiment, each
neuron incorporates an extra parameter specifying a number
of clock ticks during which any output spike outputted by the
neuron is suppressed.

The motion and saliency corelet 400 further comprises a
saliency merge corelet 450 for fusing all saliency maps gen-
erated by the motion and saliency corelet 400. As shown in
FIG. 7, the saliency merge corelet 450 is itself a complex
corelet 160 comprising multiple corelets 100.

In one embodiment, the saliency merge corelet 450 com-
prises multiple normalization and gain corelets 460. A nor-
malization and gain corelet 460 normalizes resolution of a
saliency map by routing neuronal firing events of each input
pixel/axon to one or more output pixels/neurons, wherein the
number of input and output pixels need not be identical. Each
neuron does not generate a spike if there are no input spikes in
any of the input pixels that are mapped to this output pixel.
Otherwise, if there is at least one input spike in one of the
input pixels that are mapped to the output pixel, a user-
specified number of spikes are output (e.g., the gain of the
input). Each scale i of each Gaussian pyramid 500 for each
channel 240 has a corresponding normalization and gain
corelet 460 for normalizing a saliency map generated by a
motion saliency corelet 420 or spatial saliency corelet 430.

In one embodiment, for each data layer (i.e., scale) of each
multi-scale data structure (i.e., Gaussian pyramid) corre-
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sponding to each channel of each image frame 250F, a con-
volution of neural spiking data corresponding to the channel
is determined by convolving the neural spiking data with a
two-dimensional smoothing kernel, wherein the convolution
is determined using a set of spiking neurons corresponding to
the data layer, and wherein a neural spiking representation
outputted by the data layer represents a spatial subsampling
of the convolution.

For example, the saliency merge corelet 450 further com-
prises multiple Gaussian smoothing corelets 470. A Gaussian
smoothing corelet 470 applies a Gaussian smoothing operator
to a saliency map to suppress speckles and enhance centers
indicating salient features. Each scale i of each Gaussian
pyramid 500 for each channel 240 has a corresponding Gaus-
sian smoothing corelet 470 for applying the Gaussian
smoothing operator to a saliency map generated by a motion
saliency corelet 420 or spatial saliency corelet 430.

The saliency merge corelet 450 further comprises a
weighted maximum and average corelet 480. The weighted
maximum and average corelet 480 merges the saliency maps
generated. Specifically, the weighted maximum and average
corelet 480 determines, for each channel 240, a correspond-
ing weighted maximum of all saliency maps generated for the
channel 240. The weighted maximum and average corelet
480 then determines a weighted average based on each
weighted maximum for each channel 240, and generates a
fused saliency map based on the weighted average.

In one embodiment, one or more features are extracted
from each data layer of each multi-scale data structure using
aneural network including one or more neurons. Each neuron
of'the neural network receives input via one or more weighted
incoming lines, wherein, for each neural spike delivered to
each input line, a neuron of the neural network receives the
neural spike via a weighted incoming line, and the neuron
integrates a weight corresponding to the weighted incoming
line as input. Each neuron generates one or more outgoing
neural spikes based on an activation function and input inte-
grated by the neuron. Each input received by each neuron
represents input from one of the following: an external
source, and at least other neuron of the neural network. The
neurons include a set of neurons representing output, wherein
outgoing neural spikes generated by the set of neurons encode
the one or more extracted features. Each neuron generates an
outgoing neural spike when input integrated by the neuron
exceeds a pre-determined threshold.

The neural network further includes a synaptic crossbar
array for interconnecting the neurons. The array includes one
or more axons, one or more dendrite, and one or more
weighted synaptic connections interconnecting the axons
with the dendrites. Each axon of the array is an input line that
one or more neural spikes are delivered to. Each dendrite of
the array is a weighted incoming line that delivers one or more
weighted neural spikes to a particular neuron of the neural
network. In one embodiment, the weighted synaptic connec-
tions are binary. Each neuron assigns a weight to an incoming
neural spike based on an axon that the incoming neural spike
was delivered to.

In one embodiment, the features extracted comprise at least
one of the following: one or more mathematically defined
features, and one or more learned features. The mathemati-
cally defined feature include at least one of the following: one
or more edge extraction operators operating on luminance
and color channels, one or more texture extraction operators
for extracting high frequency spatial activity, and one or more
local averaging operations. The one or more learned features
include at least one feature learned from training data using
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one or more of the following algorithms: k-means clustering,
and input/desired output covariance.

FIG. 8A illustrates extracting motion saliency features, in
accordance with an embodiment of the invention. In one
embodiment, a Gaussian pyramid 500 comprises three layers,
wherein each layer comprises an image frame scaled differ-
ently from an image frame in another layer. As shown in FIG.
8A, the Gaussian pyramid comprises a first layer [.1 compris-
ing a first image frame 500, , of scale 1, a second layer [.2
comprising a second image frame 500, of scale 2, and a third
layer L3 comprising a third image frame 500, ; of scale 3. The
first image frame 500, , is finer-scaled than the second image
frame 500, , and the third image frame 500, ; (i.e., the second
image frame 500,, and the third image frame 500, are
coarser-scaled than the first image frame 500, ). The second
image frame 500, , is finer-scaled than the third image frame
500, ; (i.e., the third image frame 500, ; is coarser-scaled than
the second image frame 500; ).

As stated above, the saliency system 200 extracts motion
saliency features from image frames 260F from Channel 1.
Specifically, each scale i of the Gaussian pyramid 500 for
Channel 1 has a corresponding motion saliency corelet 420
for extracting motion saliency features based on an image
frame of scale i and adjacent image frames of scale i, and
generating a saliency map representing the extracted motion
saliency features.

For example, each layer L1, 1.2 and L3 of the Gaussian
pyramid 500 in FIG. 8 A has a corresponding motion saliency
corelet 420. A corresponding motion saliency corelet 420 for
layer L1 generates a first saliency map 600, representing
extracted motion saliency features based on the first image
frame 500, , . A corresponding motion saliency corelet 420 for
layer .2 generates a second saliency map 600, , representing
extracted motion saliency features based on the second image
frame 500, ,. A corresponding motion saliency corelet 420 for
layer [.3 generates a third saliency map 600, ; representing
extracted motion saliency features based on the third image
frame 500, 5.

FIG. 8B illustrates extracting spatial saliency features for a
first channel, in accordance with an embodiment of the inven-
tion. As stated above, the saliency system 200 extracts spatial
saliency features from each image frame 260F, 270F and
280F from each Channel 1, Channel 2 and Channel 3, respec-
tively. In one embodiment, each scale i of a Gaussian pyramid
500 for Channel 1 has a corresponding spatial saliency corelet
430 for extracting spatial saliency features based on an image
frame of scale i, and generating a saliency map representing
the extracted saliency features.

For example, each layer L1, 1.2 and L3 of the Gaussian
pyramid 500 in FIG. 8B has a corresponding spatial saliency
corelet 430. A corresponding spatial saliency corelet 430 for
layer L1 first generates a saliency map 510,, representing
edge strength of the first image frame 500, ,. Based on the
saliency map 510, ,, the corresponding spatial saliency core-
let 430 for layer L1 generates another saliency map 520, ,
representing mean average edge strength of the first image
frame 500, ;. The corresponding spatial saliency corelet 430
for layer L1 then applies a center surround operation to the
saliency map 52011, and generates another saliency map
530, , representing center surround of the first image frame
500,,.

A corresponding spatial saliency corelet 420 for layer [.2
first generates a saliency map 510,, representing edge
strength of the second image frame 500,,. Based on the
saliency map 510, ,, the corresponding spatial saliency core-
let 420 for layer .2 generates another saliency map 520, ,
representing mean average edge strength of the second image
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frame 500, ,. The corresponding spatial saliency corelet 420
for layer 1.2 then applies a center surround operation to the
saliency map 520, ,, and generates another saliency map
530,, representing center surround of the second image
frame 500, ,.

A corresponding spatial saliency corelet 420 for layer L3
first generates a saliency map 510,, representing edge
strength of the third image frame 500, ;. Based on the saliency
map 510, 5, the corresponding spatial saliency corelet 420 for
layer 1.3 generates another saliency map 520, representing
mean average edge strength of the third image frame 500,,.
The corresponding spatial saliency corelet 420 for layer [.3
then applies a center surround operation to the saliency map
520, ,, and generates another saliency map 530, , represent-
ing center surround of the third image frame 500, ;.

FIG. 8C illustrates extracting spatial saliency features for a
second channel, in accordance with an embodiment of the
invention. In one embodiment, each scale i1 of a Gaussian
pyramid 700 for Channel 2 has a corresponding spatial
saliency corelet 430 for extracting spatial saliency features
based on an image frame of scale i, and generating a saliency
map representing the extracted saliency features.

For example, each layer [.1, .2 and L.3 of the Gaussian
pyramid 700 in FIG. 8C has a corresponding spatial saliency
corelet 430. A corresponding spatial saliency corelet 430 for
layer L1 first generates a saliency map 710,, representing
edge strength of the first image frame 700, ,. Based on the
saliency map 710, ,, the corresponding spatial saliency core-
let 430 for layer L1 generates another saliency map 720,
representing mean average edge strength of the first image
frame 700, ;. The corresponding spatial saliency corelet 430
for layer L1 then applies a center surround operation to the
saliency map 720,,, and generates another saliency map
730, , representing center surround of the first image frame
700, ,.

A corresponding spatial saliency corelet 420 for layer 1.2
first generates a saliency map 710,, representing edge
strength of the second image frame 700,,. Based on the
saliency map 710, ,, the corresponding spatial saliency core-
let 420 for layer L2 generates another saliency map 720,,
representing mean average edge strength of the second image
frame 700, ,. The corresponding spatial saliency corelet 420
for layer 1.2 then applies a center surround operation to the
saliency map 720, ,, and generates another saliency map
730, , representing center surround of the second image
frame 700,,.

A corresponding spatial saliency corelet 420 for layer L3
first generates a saliency map 710, representing edge
strength of the third image frame 700, ;. Based on the saliency
map 710, 5, the corresponding spatial saliency corelet 420 for
layer 1.3 generates another saliency map 720, representing
mean average edge strength of the third image frame 700,5.
The corresponding spatial saliency corelet 420 for layer [.3
then applies a center surround operation to the saliency map
720, 5, and generates another saliency map 730, 5 represent-
ing center surround of the third image frame 700, ,.

FIG. 8D illustrates extracting spatial saliency features for a
third channel, in accordance with an embodiment of the
invention. In one embodiment, each scale i1 of a Gaussian
pyramid 800 for Channel 3 has a corresponding spatial
saliency corelet 430 for extracting spatial saliency features
based on an image frame of scale i, and generating a saliency
map representing the extracted saliency features.

For example, each layer [.1, .2 and L.3 of the Gaussian
pyramid 800 in FIG. 8D has a corresponding spatial saliency
corelet 430. A corresponding spatial saliency corelet 430 for
layer L1 first generates a saliency map 810,, representing
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edge strength of the first image frame 800, ,. Based on the
saliency map 810, ,, the corresponding spatial saliency core-
let 430 for layer L1 generates another saliency map 820,
representing mean average edge strength of the first image
frame 800, ;. The corresponding spatial saliency corelet 430
for layer L1 then applies a center surround operation to the
saliency map 820,,, and generates another saliency map
830, , representing center surround of the first image frame
800, ,.

A corresponding spatial saliency corelet 420 for layer [.2
first generates a saliency map 810,, representing edge
strength of the second image frame 800,,. Based on the
saliency map 810, ,, the corresponding spatial saliency core-
let 420 for layer L2 generates another saliency map 820, ,
representing mean average edge strength of the second image
frame 800, ,. The corresponding spatial saliency corelet 420
for layer 1.2 then applies a center surround operation to the
saliency map 820,,, and generates another saliency map
830, , representing center surround of the second image
frame 800, .

A corresponding spatial saliency corelet 420 for layer L3
first generates a saliency map 810, representing edge
strength of the third image frame 800, ,. Based on the saliency
map 810, 5, the corresponding spatial saliency corelet 420 for
layer 1.3 generates another saliency map 820, ; representing
mean average edge strength of the third image frame 800,,.
The corresponding spatial saliency corelet 420 for layer [.3
then applies a center surround operation to the saliency map
820, 5, and generates another saliency map 830, ; represent-
ing center surround of the third image frame 800, ,.

FIG. 9 illustrates fusing multiple saliency maps, in accor-
dance with an embodiment of the invention. As stated above,
the saliency merge corelet 450 comprises multiple normal-
ization and gain corelets 460, and multiple Gaussian smooth-
ing corelets 470. In one embodiment, each scale i of each
Gaussian pyramid 500, 700 and 800 corresponding to Chan-
nel 1, Channel 2 and Channel 3, respectively, has a corre-
sponding normalization and gain corelet 460 for normalizing
a saliency map. Each scale i of each Gaussian pyramid 500,
700 and 800 corresponding to Channel 1, Channel 2 and
Channel 3, respectively, also has a corresponding Gaussian
smoothing corelet 470 for applying a Gaussian smoothing
operation to a saliency map.

For example, each layer L1, 1.2 and L3 of the Gaussian
pyramid 500 corresponding to Channel 1 has at least one
corresponding normalization and gain corelet 460 and at least
one corresponding Gaussian smoothing corelet 470. Specifi-
cally, a first normalization and gain corelet 460 for layer [.1
generates, based on the saliency map 600, ,, a saliency map
610, , representing a normalization of the motion saliency
features extracted from the image frame 500, . A first corre-
sponding Gaussian smoothing corelet 470 for layer L1 then
applies a Gaussian smoothing operation to the saliency map
610,, to generate another saliency map 620,, with sup-
pressed speckles and enhanced centers. A second normaliza-
tion and gain corelet 460 for layer .1 generates, based on the
saliency map 530, ,, a saliency map 540,, representing a
normalization of the spatial saliency features extracted from
the image frame 500,,. A second corresponding Gaussian
smoothing corelet 470 for layer L1 then applies a Gaussian
smoothing operation to the saliency map 54011 to generate
another saliency map 550, , with suppressed speckles and
enhanced centers.

Similarly, a first normalization and gain corelet 460 for
layer 1.2 generates, based on the saliency map 600,,, a
saliency map 610, representing a normalization of the
motion saliency features extracted from the image frame
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500, ,. A first corresponding Gaussian smoothing corelet 470
for layer L2 then applies a Gaussian smoothing operation to
the saliency map 610, , to generate another saliency map
620, , with suppressed speckles and enhanced centers. A sec-
ond normalization and gain corelet 460 for layer 1.2 gener-
ates, based on the saliency map 530, ,, a saliency map 540, ,
representing a normalization of the spatial saliency features
extracted from the image frame 500, ,. A second correspond-
ing Gaussian smoothing corelet 470 for layer [.2 then applies
a Gaussian smoothing operation to the saliency map 540, to
generate another saliency map 550, , with suppressed speck-
les and enhanced centers.

Similarly, a first normalization and gain corelet 460 for
layer L3 generates, based on the saliency map 600,;, a
saliency map 610, representing a normalization of the
motion saliency features extracted from the image frame
500, ,. A first corresponding Gaussian smoothing corelet 470
for layer L3 then applies a Gaussian smoothing operation to
the saliency map 610,; to generate another saliency map
620, ; with suppressed speckles and enhanced centers. A sec-
ond normalization and gain corelet 460 for layer 1.3 gener-
ates, based on the saliency map 530, ,, a saliency map 540,
representing a normalization of the spatial saliency features
extracted from the image frame 500, ;. A second correspond-
ing Gaussian smoothing corelet 470 for layer [.3 then applies
a Gaussian smoothing operation to the saliency map 540, to
generate another saliency map 550, , with suppressed speck-
les and enhanced centers.

Each layer L1, 1.2 and L3 of the Gaussian pyramid 700
corresponding to Channel 2 has a corresponding normaliza-
tion and gain corelet 460 and a corresponding Gaussian
smoothing corelet 470. Specifically, a normalization and gain
corelet 460 for layer L1 generates, based on the saliency map
730, ,, a saliency map 740, , representing a normalization of
the spatial saliency features extracted from the image frame
700, ,. A corresponding Gaussian smoothing corelet 470 for
layer L1 then applies a Gaussian smoothing operation to the
saliency map 740, , to generate another saliency map 750, ,
with suppressed speckles and enhanced centers.

Similarly, anormalization and gain corelet 460 for layer .2
generates, based on the saliency map 730, ,, a saliency map
740, , representing a normalization of the spatial saliency
features extracted from the image frame 700, ,. A correspond-
ing Gaussian smoothing corelet 470 for layer [.2 then applies
a Gaussian smoothing operation to the saliency map 740, to
generate another saliency map 750, , with suppressed speck-
les and enhanced centers.

Similarly, a normalization and gain corelet 460 for layer [.3
generates, based on the saliency map 730, 5, a saliency map
740, representing a normalization of the spatial saliency
features extracted from the image frame 700, ;. A correspond-
ing Gaussian smoothing corelet 470 for layer [.3 then applies
a Gaussian smoothing operation to the saliency map 740, ; to
generate another saliency map 750, ; with suppressed speck-
les and enhanced centers.

Each layer L1, 1.2 and L3 of the Gaussian pyramid 800
corresponding to Channel 3 has a corresponding normaliza-
tion and gain corelet 460 and a corresponding Gaussian
smoothing corelet 470. Specifically, a normalization and gain
corelet 460 for layer L1 generates, based on the saliency map
830, ,, a saliency map 840, , representing a normalization of
the spatial saliency features extracted from the image frame
800, ,. A corresponding Gaussian smoothing corelet 470 for
layer L1 then applies a Gaussian smoothing operation to the
saliency map 840, , to generate another saliency map 850,
with suppressed speckles and enhanced centers.
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Similarly, anormalization and gain corelet 460 for layer [.2
generates, based on the saliency map 830, ,, a saliency map
840, , representing a normalization of the spatial saliency
features extracted from the image frame 800, ,. A correspond-
ing Gaussian smoothing corelet 470 for layer [.2 then applies
a Gaussian smoothing operation to the saliency map 840, , to
generate another saliency map 850, , with suppressed speck-
les and enhanced centers.

Similarly, anormalization and gain corelet 460 for layer .3
generates, based on the saliency map 830, 5, a saliency map
840, , representing a normalization of the spatial saliency
features extracted from the image frame 800, ;. A correspond-
ing Gaussian smoothing corelet 470 for layer [.3 then applies
a Gaussian smoothing operation to the saliency map 840, , to
generate another saliency map 850, ; with suppressed speck-
les and enhanced centers.

As stated above, the saliency merge corelet 450 further
comprises a weighted max and average corelet 480. For each
channel 240, the weighted max and average corelet 480 gen-
erates a corresponding saliency map representing a weighted
maximum. For example, in one embodiment, the weighted
max and average corelet 480 generates, based on the saliency
maps 620,,, 620, , and 620, ,, a saliency map 900 represent-
ing a weighted maximum of motion saliency features
extracted from image frames 260F of Channel 1. The
weighted max and average corelet 480 further generates,
based on the saliency maps 550, ,, 550, , and 550, , a saliency
map 910 representing a weighted maximum of spatial
saliency features extracted from image frames 260F of Chan-
nel 1. The weighted max and average corelet 480 further
generates, based on the saliency maps 750,,, 750,, and
750, 5, a saliency map 920 representing a weighted maximum
of'spatial saliency features extracted from image frames 270F
of Channel 2. The weighted max and average corelet 480
further generates, based on the saliency maps 850, ,, 850, ,
and 850, 5, a saliency map 930 representing a weighted maxi-
mum of spatial saliency features extracted from image frames
280F of Channel 3.

The weighted max and average corelet 480 then generates
one or more weighted average maps based on the saliency
maps representing weighted maximums. For example, in one
embodiment, the weighted max and average corelet 480 gen-
erates a first weighted average map 940 representing the
weighted average of the saliency maps 900 and 910. The
weighted max and average corelet 480 generates a second
weighted average map 950 representing the weighted average
of the saliency maps 920 and 930. The weighted max and
average corelet 480 generates a final weighted average map
960 representing the weighted average of the saliency maps
940 and 950.

FIG. 10 illustrates detected regions of interest, in accor-
dance with an embodiment of the invention. Based on the
final weighted average map 960, the weighted max and aver-
age corelet 480 generates a fused saliency map 970 represent-
ing extracted motion saliency features and spatial saliency
features. The extracted salient features represent regions of
interest 980 within the input video 250. For example, FIG. 10
illustrates a fused saliency map 970 corresponding to an
image frame 250F. FI1G. 10 further illustrates multiple regions
of interest 980 within the image frame 250F, wherein each
region of interest corresponds to one or more salient features
represented in the fused saliency map 970.

FIG. 11 illustrates multiple example periodic spikes, in
accordance with an embodiment of the invention. Based on
the control pulses generated by the synchronization unit 230,
each neuron 11 generates periodic spikes. A first graph 1010
illustrates a first type of periodic spikes generated by a popu-
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lation of periodically spiking neurons 11. A second graph
1020 illustrates a second type of periodic spikes generated by
apopulation of periodically spiking neurons 11. A third graph
1030 illustrates a third type of periodic spikes generated by a
population of periodically spiking neurons 11. As shown in
graphs 1010, 1020 and 1030, each period comprises a pre-
determined number of clock cycles during which no spikes
occur, followed by a number of spikes in succession.

FIG. 12 illustrates a flowchart of an example process 1100
for determining regions of interest, in accordance with an
embodiment of the invention. In process block 1101, convert
each pixel of each image frame as one or more neural spikes.
Inprocess block 1102, process neural spikes to extract salient
features. In process block 1103, encode the extracted salient
features as neural spikes. In process block 1104, classify each
image region as either salient or not salient.

FIG. 13 illustrates a flowchart of an example process 1200
for generating and merging saliency maps, in accordance
with an embodiment of the invention. In process block 1201,
transducer input video. In process block 1202, generate a
Gaussian pyramid for each channel representing a dimension
of'the transduced input video. In process block 1203, for each
channel, generate corresponding saliency maps representing
extracted salient features. In process block 1204, for each
channel, normalize corresponding saliency maps. In process
block 1205, for each channel, apply Gaussian smoothing to
corresponding saliency maps. In process block 1206, gener-
ate a fused saliency map by merging each corresponding
saliency map for each channel.

FIG. 14 is a high level block diagram showing an informa-
tion processing system 300 useful for implementing one
embodiment of the present invention. The computer system
includes one or more processors, such as processor 302. The
processor 302 is connected to a communication infrastructure
304 (e.g., a communications bus, cross-over bar, or network).

The computer system can include a display interface 306
that forwards graphics, text, and other data from the commu-
nication infrastructure 304 (or from a frame butfer not shown)
for display on a display unit 308. The computer system also
includes a main memory 310, preferably random access
memory (RAM), and may also include a secondary memory
312. The secondary memory 312 may include, for example, a
hard disk drive 314 and/or a removable storage drive 316,
representing, for example, a floppy disk drive, a magnetic
tape drive, or an optical disk drive. The removable storage
drive 316 reads from and/or writes to a removable storage unit
318 in a manner well known to those having ordinary skill in
the art. Removable storage unit 318 represents, for example,
a floppy disk, a compact disc, a magnetic tape, or an optical
disk, etc. which is read by and written to by removable storage
drive 316. As will be appreciated, the removable storage unit
318 includes a computer readable medium having stored
therein computer software and/or data.

In alternative embodiments, the secondary memory 312
may include other similar means for allowing computer pro-
grams or other instructions to be loaded into the computer
system. Such means may include, for example, a removable
storage unit 320 and an interface 322. Examples of such
means may include a program package and package interface
(such as that found in video game devices), a removable
memory chip (such as an EPROM, or PROM) and associated
socket, and other removable storage units 320 and interfaces
322 which allow software and data to be transferred from the
removable storage unit 320 to the computer system.

The computer system may also include a communication
interface 324. Communication interface 324 allows software
and data to be transferred between the computer system and

10

15

20

25

30

35

40

45

50

55

60

65

20

external devices. Examples of communication interface 324
may include a modem, a network interface (such as an Eth-
ernet card), a communication port, or a PCMCIA slot and
card, etc. Software and data transferred via communication
interface 324 are in the form of signals which may be, for
example, electronic, electromagnetic, optical, or other signals
capable of being received by communication interface 324.
These signals are provided to communication interface 324
via a communication path (i.e., channel) 326. This commu-
nication path 326 carries signals and may be implemented
using wire or cable, fiber optics, a phone line, a cellular phone
link, an RF link, and/or other communication channels.

In this document, the terms “computer program medium,”
“computer usable medium,” and “computer readable
medium” are used to generally refer to media such as main
memory 310 and secondary memory 312, removable storage
drive 316, and a hard disk installed in hard disk drive 314.

Computer programs (also called computer control logic)
are stored in main memory 310 and/or secondary memory
312. Computer programs may also be received via commu-
nication interface 324. Such computer programs, when run,
enable the computer system to perform the features of the
present invention as discussed herein. In particular, the com-
puter programs, when run, enable the processor 302 to per-
form the features of the computer system. Accordingly, such
computer programs represent controllers of the computer
system.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion. The computer readable storage medium can be a tan-
gible device that canretain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
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network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
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present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more execut-
able instructions for implementing the specified logical func-
tion(s). In some alternative implementations, the functions
noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of'the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

From the above description, it can be seen that the present
invention provides a system, computer program product, and
method for implementing the embodiments of the invention.
The present invention further provides a non-transitory com-
puter-useable storage medium for extracting salient features
from video using a neurosynaptic system. The non-transitory
computer-useable storage medium has a computer-readable
program, wherein the program upon being processed on a
computer causes the computer to implement the steps of the
present invention according to the embodiments described
herein. References in the claims to an element in the singular
is not intended to mean “one and only” unless explicitly so
stated, but rather “one or more.” All structural and functional
equivalents to the elements of the above-described exemplary
embodiment that are currently known or later come to be
known to those of ordinary skill in the art are intended to be
encompassed by the present claims. No claim element herein
is to be construed under the provisions of 35 U.S.C. section
112, sixth paragraph, unless the element is expressly recited
using the phrase “means for” or “step for.”

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.



US 9,355,331 B2

23

What is claimed is:

1. A method comprising:

receiving an input sequence of image frames, wherein each

image frame comprises at least one pixel channel repre-
senting a dimension of the input sequence of image
frames; and

utilizing one or more neurosynaptic core circuits to esti-

mate visual saliency for the input sequence of image
frames, wherein the one or more neurosynaptic core
circuits perform operations including:
for each pixel channel of each image frame:
generating a corresponding multi-scale data structure
by spatially subsampling corresponding neural
spiking data representing pixel intensity of each
pixel of the pixel channel at different subsampling
scales;
generating at least one corresponding saliency map by
extracting at least one salient feature from the cor-
responding multi-scale data structure;
normalizing resolution of each corresponding
saliency map;
applying a Gaussian smoothing operator to each cor-
responding saliency map to suppress speckles and
enhance centers indicating salient features; and
merging each saliency map corresponding to each
pixel channel into a combined saliency map repre-
senting estimated visual saliency for the input
sequence of image frames.

2. The method of claim 1, wherein the operation further
include:

for each pixel channel of each image frame:

encoding salient features extracted from a correspond-
ing multi-scale data structure as neural spikes.

3. The method of claim 1, wherein each saliency map is a
retinotopic map of salient features.

4. The method of claim 1, wherein the input sequence of
image frames constitutes a video of one or more frames that
are not necessarily related to each other.

5. The method of claim 1, wherein:

for each pixel channel of each image frame:

a corresponding multi-scale data structure comprises
multiple data layers;

each data layer of the corresponding multi-scale data
structure corresponds to a subsampling scale of dif-
ferent subsampling scales; and

the corresponding multi-scale data structure represents a
distinct multi-scale pyramidal representation of the
pixel channel.

6. The method of claim 1, wherein:

for each pixel channel of each image frame:

spatially subsampling corresponding neural spiking
data at different subsampling scales comprises deter-
mining a convolution of the corresponding neural
spiking data by convolving the neural spiking data
with a two-dimensional smoothing kernel.

7. The method of claim 1, wherein the operations further
include:

for each pixel channel of each image frame:

converting pixel intensity of each pixel of the pixel chan-
nel to neural spikes based on a temporal coding
scheme and a spatial coding scheme.

8. The method of claim 1, further comprising:

utilizing the one or more neurosynaptic core circuits to

estimate motion saliency for the input sequence of
image frames, wherein the one or more neurosynaptic
core circuits further perform operations including:

for each image frame:
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detecting one or more salient image regions of the
image frame by identifying one or more pixel sub-
sets where one or more changes have occurred over
time.

9. The method of claim 1, wherein:

for each pixel channel of each image frame:

salient features extracted from a corresponding multi-
scale data structure comprise at least one of the fol-
lowing: one or more mathematically defined features,
and one or more learned features;

the one or more mathematically defined features include
at least one of the following: one or more edge extrac-
tion operators operating on luminance and color chan-
nels, one or more texture extraction operators for
extracting high frequency spatial activity, and one or
more local averaging operations; and

the one or more learned features include at least one
feature learned from training data using one or more
of the following algorithms: k-means clustering, and
input/desired output covariance.

10. A system comprising a computer processor, a com-
puter-readable hardware storage medium, and program code
embodied with the computer-readable hardware storage
medium for execution by the computer processor to imple-
ment a method comprising:

receiving an input sequence of image frames, wherein each

image frame comprises at least one pixel channel repre-
senting a dimension of the input sequence of image
frames; and

utilizing one or more neurosynaptic core circuits to esti-

mate visual saliency for the input sequence of image
frames, wherein the one or more neurosynaptic core
circuits perform operations including:
for each pixel channel of each image frame:
generating a corresponding multi-scale data structure
by spatially subsampling corresponding neural
spiking data representing pixel intensity of each
pixel of the pixel channel at different subsampling
scales;
generating at least one corresponding saliency map by
extracting at least one salient feature from the cor-
responding multi-scale data structure;
normalizing resolution of each corresponding
saliency map;
applying a Gaussian smoothing operator to each cor-
responding saliency map to suppress speckles and
enhance centers indicating salient features; and
merging each saliency map corresponding to each pixel
channel into a combined saliency map representing
estimated visual saliency for the input sequence of
image frames.

11. The system of claim 10, wherein the operation further
include:

for each pixel channel of each image frame:

encoding salient features extracted from a correspond-
ing multi-scale data structure as neural spikes.

12. The system of claim 10, wherein each saliency map is
a retinotopic map of salient features.

13. The system of claim 10, wherein the input sequence of
image frames constitutes a video of one or more frames that
are not necessarily related to each other.

14. The system of claim 10, wherein:

for each pixel channel of each image frame:

a corresponding multi-scale data structure comprises
multiple data layers;
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each data layer of the corresponding multi-scale data
structure corresponds to a subsampling scale of dif-
ferent subsampling scales; and
the corresponding multi-scale data structure represents a
distinct multi-scale pyramidal representation of the
pixel channel.
15. The system of claim 10, wherein:
for each pixel channel of each image frame:
spatially subsampling corresponding neural spiking
data at different subsampling scales comprises deter-
mining a convolution of the corresponding neural
spiking data by convolving the neural spiking data
with a two-dimensional smoothing kernel.
16. The system of claim 10, wherein the operations further
include:
for each pixel channel of each image frame:
converting pixel intensity of each pixel of the pixel chan-
nel to neural spikes based on a temporal coding
scheme and a spatial coding scheme.
17. The system of claim 10, further comprising:
utilizing the one or more neurosynaptic core circuits to
estimate motion saliency for the input sequence of
image frames, wherein the one or more neurosynaptic
core circuits further perform operations including:
for each image frame:
detecting one or more salient image regions of the
image frame by identifying one or more pixel sub-
sets where one or more changes have occurred over
time.
18. The system of claim 10, wherein:
for each pixel channel of each image frame:
salient features extracted from a corresponding multi-
scale data structure comprise at least one of the fol-
lowing: one or more mathematically defined features,
and one or more learned features;
the one or more mathematically defined features include
at least one of the following: one or more edge extrac-
tion operators operating on luminance and color chan-
nels, one or more texture extraction operators for
extracting high frequency spatial activity, and one or
more local averaging operations; and
the one or more learned features include at least one
feature learned from training data using one or more
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of the following algorithms: k-means clustering, and
input/desired output covariance.

19. A computer program product comprising a computer-
readable hardware storage medium having program code
embodied therewith, the program code being executable by a
computer to implement a method comprising:

receiving an input sequence of image frames, wherein each

image frame comprises at least one pixel channel repre-
senting a dimension of the input sequence of image
frames; and

utilizing one or more neurosynaptic core circuits to esti-

mate visual saliency for the input sequence of image
frames, wherein the one or more neurosynaptic core
circuits perform operations including:
for each pixel channel of each image frame:
generating a corresponding multi-scale data structure
by spatially subsampling corresponding neural
spiking data representing pixel intensity of each
pixel of the pixel channel at different subsampling
scales;
generating at least one corresponding saliency map by
extracting at least one salient feature from the cor-
responding multi-scale data structure;
normalizing resolution of each corresponding
saliency map;
applying a Gaussian smoothing operator to each cor-
responding saliency map to suppress speckles and
enhance centers indicating salient features; and
merging each saliency map corresponding to each
pixel channel into a combined saliency map repre-
senting estimated visual saliency for the input
sequence of image frames.

20. The computer program product of claim 19, wherein:

for each pixel channel of each image frame:

a corresponding multi-scale data structure comprises
multiple data layers;

each data layer of the corresponding multi-scale data
structure corresponds to a subsampling scale of dif-
ferent subsampling scales; and

the corresponding multi-scale data structure represents a
distinct multi-scale pyramidal representation of the
pixel channel.
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